Saturday, 15 May 2021

Lightning and subvisible discharges produce molecules that clean the atmosphere

Lightning strike

 Lightning bolts break apart nitrogen and oxygen molecules in the atmosphere and create reactive chemicals that affect greenhouse gases. Now, a team of atmospheric chemists and lightning scientists have found that lightning bolts and, surprisingly, subvisible discharges that cannot be seen by cameras or the naked eye produce extreme amounts of the hydroxyl radical -- OH -- and hydroperoxyl radical -- HO2.

The hydroxyl radical is important in the atmosphere because it initiates chemical reactions and breaks down molecules like the greenhouse gas methane. OH is the main driver of many compositional changes in the atmosphere.

"Initially, we looked at these huge OH and HO2 signals found in the clouds and asked, what is wrong with our instrument?" said William H. Brune, distinguished professor of meteorology at Penn State. "We assumed there was noise in the instrument, so we removed the huge signals from the dataset and shelved them for later study."

The data was from an instrument on a plane flown above Colorado and Oklahoma in 2012 looking at the chemical changes that thunderstorms and lightning make to the atmosphere.

But a few years ago, Brune took the data off the shelf, saw that the signals were really hydroxyl and hydroperoxyl, and then worked with a graduate student and research associate to see if these signals could be produced by sparks and subvisible discharges in the laboratory. Then they did a reanalysis of the thunderstrom and lightning dataset.

"With the help of a great undergraduate intern," said Brune, "we were able to link the huge signals seen by our instrument flying through the thunderstorm clouds to the lightning measurements made from the ground."

The researchers report their results online today (April 29) in Science First Release and the Journal of Geophysical Research -- Atmospheres.

Brune notes that airplanes avoid flying through the rapidly rising cores of thunderstorms because it is dangerous, but can sample the anvil, the top portion of the cloud that spreads outward in the direction of the wind. Visible lightning happens in the part of the anvil near the thunderstorm core.

"Through history, people were only interested in lightning bolts because of what they could do on the ground," said Brune. "Now there is increasing interest in the weaker electrical discharges in thunderstorms that lead to lightning bolts."

Most lightning never strikes the ground, and the lightning that stays in the clouds is particularly important for affecting ozone, and important greenhouse gas, in the upper atmosphere. It was known that lightning can split water to form hydroxyl and hydroperoxyl, but this process had never been observed before in thunderstorms.

What confused Brune's team initially was that their instrument recorded high levels of hydroxyl and hydroperoxyl in areas of the cloud where there was no lightning visible from the aircraft or the ground. Experiments in the lab showed that weak electrical current, much less energetic than that of visible lightning, could produce these same components.

While the researchers found hydroxyl and hydroperoxyl in areas with subvisible lightning, they found little evidence of ozone and no evidence of nitric oxide, which requires visible lightning to form. If subvisible lightning occurs routinely, then the hydroxyl and hydroperoxyl these electrical events create need to be included in atmospheric models. Currently, they are not.

According to the researchers, "Lightning-generated OH (hydroxyl) in all storms happening globally can be responsible for a highly uncertain but substantial 2% to 16% of global atmospheric OH oxidation."

"These results are highly uncertain, partly because we do not know how these measurements apply to the rest of the globe," said Brune. "We only flew over Colorado and Oklahoma. Most thunderstorms are in the tropics. The whole structure of high plains storms is different than those in the tropics. Clearly we need more aircraft measurements to reduce this uncertainty."

Other researchers at Penn State include Patrick J. McFarland, undergraduate; David O. Miller, doctoral recipient; and Jena M. Jenkins, doctoral candidate, all in meteorology and atmospheric science.

Saturday, 8 May 2021

Mars has right ingredients for present-day microbial life beneath its surface, study finds

Mars illustration

 As NASA's Perseverance rover begins its search for ancient life on the surface of Mars, a new study suggests that the Martian subsurface might be a good place to look for possible present-day life on the Red Planet.

The study, published in the journal Astrobiology, looked at the chemical composition of Martian meteorites -- rocks blasted off of the surface of Mars that eventually landed on Earth. The analysis determined that those rocks, if in consistent contact with water, would produce the chemical energy needed to support microbial communities similar to those that survive in the unlit depths of the Earth. Because these meteorites may be representative of vast swaths of the Martian crust, the findings suggest that much of the Mars subsurface could be habitable.

"The big implication here for subsurface exploration science is that wherever you have groundwater on Mars, there's a good chance that you have enough chemical energy to support subsurface microbial life," said Jesse Tarnas, a postdoctoral researcher at NASA's Jet Propulsion Laboratory who led the study while completing his Ph.D. at Brown University. "We don't know whether life ever got started beneath the surface of Mars, but if it did, we think there would be ample energy there to sustain it right up to today."

In recent decades, scientists have discovered that Earth's depths are home to a vast biome that exists largely separated from the world above. Lacking sunlight, these creatures survive using the byproducts of chemical reactions produced when rocks come into contact with water.

One of those reactions is radiolysis, which occurs when radioactive elements within rocks react with water trapped in pore and fracture space. The reaction breaks water molecules into their constituent elements, hydrogen and oxygen. The liberated hydrogen is dissolved in the remaining groundwater, while minerals like pyrite (fool's gold) soak up free oxygen to form sulfate minerals. Microbes can ingest the dissolved hydrogen as fuel and use the oxygen preserved in the sulfates to "burn" that fuel.

In places like Canada's Kidd Creek Mine, these "sulfate-reducing" microbes have been found living more than a mile underground, in water that hasn't seen the light of day in more than a billion years. Tarnas has been working with a team co-led by Brown University professor Jack Mustard and Professor Barbara Sherwood Lollar of the University of Toronto to better understand these underground systems, with an eye toward looking for similar habitats on Mars and elsewhere in the solar system. The project, called Earth 4-D: Subsurface Science and Exploration, is supported by the Canadian Institute for Advances Research.

For this new study, the researchers wanted to see if the ingredients for radiolysis-driven habitats could exist on Mars. They drew on data from NASA's Curiosity rover and other orbiting spacecraft, as well as compositional data from a suite of Martian meteorites, which are representative of different parts of the planet's crust.

The researchers were looking for the ingredients for radiolysis: radioactive elements like thorium, uranium and potassium; sulfide minerals that could be converted to sulfate; and rock units with adequate pore space to trap water. The study found that in several different types of Martian meteorites, all the ingredients are present in adequate abundances to support Earth-like habitats. This was particularly true for regolith breccias -- meteorites sourced from crustal rocks more than 3.6 billion years old -- which were found to have the highest potential for life support. Unlike Earth, Mars lacks a plate tectonics system that constantly recycle crustal rocks. So these ancient terrains remain largely undisturbed.

The researchers say the findings help make the case for an exploration program that looks for signs of present-day life in the Martian subsurface. Prior research has found evidence of an active groundwater system on Mars in the past, the researchers say, and there's reason to believe that groundwater exists today. One recent study, for example, raised the possibility of an underground lake lurking under the planet's southern ice cap. This new research suggests that wherever there's groundwater, there's energy for life.

The cerebellum may have played an important role in the evolution of the human brain

Illustration of human brain, cerebellum highlighted

 The cerebellum -- a part of the brain once recognized mainly for its role in coordinating movement -- underwent evolutionary changes that may have contributed to human culture, language and tool use. This new finding appears in a study by Elaine Guevara of Duke University and colleagues, published May 6th in the journal PLOS Genetics.

Scientists studying how humans evolved their remarkable capacity to think and learn have frequently focused on the prefrontal cortex, a part of the brain vital for executive functions, like moral reasoning and decision making. But recently, the cerebellum has begun receiving more attention for its role in human cognition. Guevara and her team investigated the evolution of the cerebellum and the prefrontal cortex by looking for molecular differences between humans, chimpanzees, and rhesus macaque monkeys. Specifically, they examined genomes from the two types of brain tissue in the three species to find epigenetic differences. These are modifications that do not change the DNA sequence but can affect which genes are turned on and off and can be inherited by future generations.

Compared to chimpanzees and rhesus macaques, humans showed greater epigenetic differences in the cerebellum than the prefrontal cortex, highlighting the importance of the cerebellum in human brain evolution. The epigenetic differences were especially apparent on genes involved in brain development, brain inflammation, fat metabolism and synaptic plasticity -- the strengthening or weakening of connections between neurons depending on how often they are used.

The epigenetic differences identified in the new study are relevant for understanding how the human brain functions and its ability to adapt and make new connections. These epigenetic differences may also be involved in aging and disease. Previous studies have shown that epigenetic differences between humans and chimpanzees in the prefrontal cortex are associated with genes involved in psychiatric conditions and neurodegeneration. Overall, the new study affirms the importance of including the cerebellum when studying how the human brain evolved.

Tuesday, 4 May 2021

Among COVID-19 survivors, an increased risk of death, serious illness

COVID-19 test concept

As the COVID-19 pandemic has progressed, it has become clear that many survivors -- even those who had mild cases -- continue to manage a variety of health problems long after the initial infection should have resolved. In what is believed to be the largest comprehensive study of long COVID-19 to date, researchers at Washington University School of Medicine in St. Louis showed that COVID-19 survivors -- including those not sick enough to be hospitalized -- have an increased risk of death in the six months following diagnosis with the virus.

The researchers also have catalogued the numerous diseases associated with COVID-19, providing a big-picture overview of the long-term complications of COVID-19 and revealing the massive burden this disease is likely to place on the world's population in the coming years.

The study, involving more than 87,000 COVID-19 patients and nearly 5 million control patients in a federal database, appears online April 22 in the journal Nature.

"Our study demonstrates that up to six months after diagnosis, the risk of death following even a mild case of COVID-19 is not trivial and increases with disease severity," said senior author Ziyad Al-Aly, MD, an assistant professor of medicine. "It is not an exaggeration to say that long COVID-19 -- the long-term health consequences of COVID-19 -- is America's next big health crisis. Given that more than 30 million Americans have been infected with this virus, and given that the burden of long COVID-19 is substantial, the lingering effects of this disease will reverberate for many years and even decades. Physicians must be vigilant in evaluating people who have had COVID-19. These patients will need integrated, multidisciplinary care."

In the new study, the researchers were able to calculate the potential scale of the problems first glimpsed from anecdotal accounts and smaller studies that hinted at the wide-ranging side effects of surviving COVID-19, from breathing problems and irregular heart rhythms to mental health issues and hair loss.

"This study differs from others that have looked at long COVID-19 because, rather than focusing on just the neurologic or cardiovascular complications, for example, we took a broad view and used the vast databases of the Veterans Health Administration (VHA) to comprehensively catalog all diseases that may be attributable to COVID-19," said Al-Aly, also director of the Clinical Epidemiology Center and chief of the Research and Education Service at the Veterans Affairs St. Louis Health Care System.

The investigators showed that, after surviving the initial infection (beyond the first 30 days of illness), COVID-19 survivors had an almost 60% increased risk of death over the following six months compared with the general population. At the six-month mark, excess deaths among all COVID-19 survivors were estimated at eight people per 1,000 patients. Among patients who were ill enough to be hospitalized with COVID-19 and who survived beyond the first 30 days of illness, there were 29 excess deaths per 1,000 patients over the following six months.

"These later deaths due to long-term complications of the infection are not necessarily recorded as deaths due to COVID-19," Al-Aly said. "As far as total pandemic death toll, these numbers suggest that the deaths we're counting due to the immediate viral infection are only the tip of the iceberg."

The researchers analyzed data from the national health-care databases of the U.S. Department of Veterans Affairs. The dataset included 73,435 VHA patients with confirmed COVID-19 but who were not hospitalized and, for comparison, almost 5 million VHA patients who did not have a COVID-19 diagnosis and were not hospitalized during this time frame. The veterans in the study were primarily men (almost 88%), but the large sample size meant that the study still included 8,880 women with confirmed cases.

To help understand the long-term effects of more severe COVID-19, the researchers harnessed VHA data to conduct a separate analysis of 13,654 patients hospitalized with COVID-19 compared with 13,997 patients hospitalized with seasonal flu. All patients survived at least 30 days after hospital admission, and the analysis included six months of follow-up data.

The researchers confirmed that, despite being initially a respiratory virus, long COVID-19 can affect nearly every organ system in the body. Evaluating 379 diagnoses of diseases possibly related to COVID-19, 380 classes of medications prescribed and 62 laboratory tests administered, the researchers identified newly diagnosed major health issues that persisted in COVID-19 patients over at least six months and that affected nearly every organ and regulatory system in the body, including:

  • Respiratory system: persistent cough, shortness of breath and low oxygen levels in the blood.
  • Nervous system: stroke, headaches, memory problems and problems with senses of taste and smell.
  • Mental health: anxiety, depression, sleep problems and substance abuse.
  • Metabolism: new onset of diabetes, obesity and high cholesterol.
  • Cardiovascular system: acute coronary disease, heart failure, heart palpitations and irregular heart rhythms.
  • Gastrointestinal system: constipation, diarrhea and acid reflux.
  • Kidney: acute kidney injury and chronic kidney disease that can, in severe cases, require dialysis.
  • Coagulation regulation: blood clots in the legs and lungs.
  • Skin: rash and hair loss.
  • Musculoskeletal system: joint pain and muscle weakness.
  • General health: malaise, fatigue and anemia.

While no survivor suffered from all of these problems, many developed a cluster of several issues that have a significant impact on health and quality of life.

Among hospitalized patients, those who had COVID-19 fared considerably worse than those who had influenza, according to the analysis. COVID-19 survivors had a 50% increased risk of death compared with flu survivors, with about 29 excess deaths per 1,000 patients at six months. Survivors of COVID-19 also had a substantially higher risk of long-term medical problems.

"Compared with flu, COVID-19 showed remarkably higher burden of disease, both in the magnitude of risk and the breadth of organ system involvement," Al-Aly said. "Long COVID-19 is more than a typical postviral syndrome. The size of the risk of disease and death and the extent of organ system involvement is far higher than what we see with other respiratory viruses, such as influenza."

In addition, the researchers found that the health risks from surviving COVID-19 increased with the severity of disease, with hospitalized patients who required intensive care being at highest risk of long COVID-19 complications and death.

"Some of these problems may improve with time -- for example, shortness of breath and cough may get better -- and some problems may get worse," Al-Aly added. "We will continue following these patients to help us understand the ongoing impacts of the virus beyond the first six months after infection. We're only a little over a year into this pandemic, so there may be consequences of long COVID-19 that are not yet visible."


 

Genetic effects of Chernobyl radiation

View of Chernobyl nuclear power plant 

In two landmark studies, researchers have used cutting-edge genomic tools to investigate the potential health effects of exposure to ionizing radiation, a known carcinogen, from the 1986 accident at the Chernobyl nuclear power plant in northern Ukraine. One study found no evidence that radiation exposure to parents resulted in new genetic changes being passed from parent to child. The second study documented the genetic changes in the tumors of people who developed thyroid cancer after being exposed as children or fetuses to the radiation released by the accident.

The findings, published around the 35th anniversary of the disaster, are from international teams of investigators led by researchers at the National Cancer Institute (NCI), part of the National Institutes of Health. The studies were published online in Science on April 22.

"Scientific questions about the effects of radiation on human health have been investigated since the atomic bombings of Hiroshima and Nagasaki and have been raised again by Chernobyl and by the nuclear accident that followed the tsunami in Fukushima, Japan," said Stephen J. Chanock, M.D., director of NCI's Division of Cancer Epidemiology and Genetics (DCEG). "In recent years, advances in DNA sequencing technology have enabled us to begin to address some of the important questions, in part through comprehensive genomic analyses carried out in well-designed epidemiological studies."

The Chernobyl accident exposed millions of people in the surrounding region to radioactive contaminants. Studies have provided much of today's knowledge about cancers caused by radiation exposures from nuclear power plant accidents. The new research builds on this foundation using next-generation DNA sequencing and other genomic characterization tools to analyze biospecimens from people in Ukraine who were affected by the disaster.

The first study investigated the long-standing question of whether radiation exposure results in genetic changes that can be passed from parent to offspring, as has been suggested by some studies in animals. To answer this question, Dr. Chanock and his colleagues analyzed the complete genomes of 130 people born between 1987 and 2002 and their 105 mother-father pairs.

One or both of the parents had been workers who helped clean up from the accident or had been evacuated because they lived in close proximity to the accident site. Each parent was evaluated for protracted exposure to ionizing radiation, which may have occurred through the consumption of contaminated milk (that is, milk from cows that grazed on pastures that had been contaminated by radioactive fallout). The mothers and fathers experienced a range of radiation doses.

The researchers analyzed the genomes of adult children for an increase in a particular type of inherited genetic change known as de novo mutations. De novo mutations are genetic changes that arise randomly in a person's gametes (sperm and eggs) and can be transmitted to their offspring but are not observed in the parents.

For the range of radiation exposures experienced by the parents in the study, there was no evidence from the whole-genome sequencing data of an increase in the number or types of de novo mutations in their children born between 46 weeks and 15 years after the accident. The number of de novo mutations observed in these children were highly similar to those of the general population with comparable characteristics. As a result, the findings suggest that the ionizing radiation exposure from the accident had a minimal, if any, impact on the health of the subsequent generation.

"We view these results as very reassuring for people who were living in Fukushima at the time of the accident in 2011," said Dr. Chanock. "The radiation doses in Japan are known to have been lower than those recorded at Chernobyl."

In the second study, researchers used next-generation sequencing to profile the genetic changes in thyroid cancers that developed in 359 people exposed as children or in utero to ionizing radiation from radioactive iodine (I-131) released by the Chernobyl nuclear accident and in 81 unexposed individuals born more than nine months after the accident. Increased risk of thyroid cancer has been one of the most important adverse health effects observed after the accident.

The energy from ionizing radiation breaks the chemical bonds in DNA, resulting in a number of different types of damage. The new study highlights the importance of a particular kind of DNA damage that involves breaks in both DNA strands in the thyroid tumors. The association between DNA double-strand breaks and radiation exposure was stronger for children exposed at younger ages.

Next, the researchers identified the candidate "drivers" of the cancer in each tumor -- the key genes in which alterations enabled the cancers to grow and survive. They identified the drivers in more than 95% of the tumors. Nearly all the alterations involved genes in the same signaling pathway, called the mitogen-activated protein kinase (MAPK) pathway, including the genes BRAF, RAS, and RET.

The set of affected genes is similar to what has been reported in previous studies of thyroid cancer. However, the researchers observed a shift in the distribution of the types of mutations in the genes. Specifically, in the Chernobyl study, thyroid cancers that occurred in people exposed to higher radiation doses as children were more likely to result from gene fusions (when both strands of DNA are broken and then the wrong pieces are joined back together), whereas those in unexposed people or those exposed to low levels of radiation were more likely to result from point mutations (single base-pair changes in a key part of a gene).

The results suggest that DNA double-strand breaks may be an early genetic change following exposure to radiation in the environment that subsequently enables the growth of thyroid cancers. Their findings provide a foundation for further studies of radiation-induced cancers, particularly those that involve differences in risk as a function of both dose and age, the researchers added.

"An exciting aspect of this research was the opportunity to link the genomic characteristics of the tumor with information about the radiation dose -- the risk factor that potentially caused the cancer," said Lindsay M. Morton, Ph.D., deputy chief of the Radiation Epidemiology Branch in DCEG, who led the study.

"The Cancer Genome Atlas set the standard for how to comprehensively profile tumor characteristics," Dr. Morton continued. "We extended that approach to complete the first large genomic landscape study in which the potential carcinogenic exposure was well-characterized, enabling us to investigate the relationship between specific tumor characteristics and radiation dose."

She noted that the study was made possible by the creation of the Chernobyl Tissue Bank about two decades ago -- long before the technology had been developed to conduct the kind of genomic and molecular studies that are common today.

Global glacier retreat has accelerated

Skaftafell glacier, Iceland 

 An international research team including scientists from ETH Zurich has shown that almost all the world's glaciers are becoming thinner and losing mass' and that these changes are picking up pace. The team's analysis is the most comprehensive and accurate of its kind to date.

Glaciers are a sensitive indicator of climate change -- and one that can be easily observed. Regardless of altitude or latitude, glaciers have been melting at a high rate since the mid-20th century. Until now, however, the full extent of ice loss has only been partially measured and understood. Now an international research team led by ETH Zurich and the University of Toulouse has authored a comprehensive study on global glacier retreat, which was published online in Nature on 28 April. This is the first study to include all the world's glaciers -- around 220,000 in total -- excluding the Greenland and Antarctic ice sheets. The study's spatial and temporal resolution is unprecedented -- and shows how rapidly glaciers have lost thickness and mass over the past two decades.

Rising sea levels and water scarcity What was once permanent ice has declined in volume almost everywhere around the globe. Between 2000 and 2019, the world's glaciers lost a total of 267 gigatonnes (billion tonnes) of ice per year on average -- an amount that could have submerged the entire surface area of Switzerland under six metres of water every year. The loss of glacial mass also accelerated sharply during this period. Between 2000 and 2004, glaciers lost 227 gigatonnes of ice per year, but between 2015 and 2019, the lost mass amounted to 298 gigatonnes annually. Glacial melt caused up to 21 percent of the observed rise in sea levels during this period -- some 0.74 millimetres a year. Nearly half of the rise in sea levels is attributable to the thermal expansion of water as it heats up, with meltwaters from the Greenland and Antarctic ice sheets and changes in terrestrial water storage accounting for the remaining third.

Among the fastest melting glaciers are those in Alaska, Iceland and the Alps. The situation is also having a profound effect on mountain glaciers in the Pamir mountains, the Hindu Kush and the Himalayas. "The situation in the Himalayas is particularly worrying," explains Romain Hugonnet, lead author of the study and researcher at ETH Zurich and the University of Toulouse. "During the dry season, glacial meltwater is an important source that feeds major waterways such as the Ganges, Brahmaputra and Indus rivers. Right now, this increased melting acts as a buffer for people living in the region, but if Himalayan glacier shrinkage keeps accelerating, populous countries like India and Bangladesh could face water or food shortages in a few decades." The findings of this study can improve hydrological models and be used to make more accurate predictions on a global and local scales -- for instance, to estimate how much Himalayan glacier meltwater one can anticipate over the next few decades.

To their surprise, the researchers also identified areas where melt rates slowed between 2000 and 2019, such as on Greenland's east coast and in Iceland and Scandinavia. They attribute this divergent pattern to a weather anomaly in the North Atlantic that caused higher precipitation and lower temperatures between 2010 and 2019, thereby slowing ice loss. The researchers also discovered that the phenomenon known as the Karakoram anomaly is disappearing. Prior to 2010, glaciers in the Karakoram mountain range were stable -- and in some cases, even growing. However, the researchers' analysis revealed that Karakoram glaciers are now losing mass as well.

Study based on stereo satellite images As a basis for the study, the research team used imagery captured on board NASA's Terra satellite, which has been orbiting the Earth once every 100 minutes since 1999 at an altitude of nearly 700 kilometres. Terra is home to ASTER, a multispectral imager with two cameras that record pairs of stereo images, allowing researchers to create high-resolution digital elevation models of all the world's glaciers. The team used the full archive of ASTER images to reconstruct a time series of glacial elevation, which enabled them to calculate changes in the thickness and mass of the ice over time.

Lead author Romain Hugonnet is a doctoral student at ETH Zurich and the University of Toulouse. He worked on this project for nearly three years and spent 18 months analysing the satellite data. To process the data, the researchers used a supercomputer at the University of Northern British Columbia. Their findings will be included in the next Assessment Report of the United Nations Intergovernmental Panel on Climate Change (IPCC), which is due to be published later this year. "Our findings are important on a political level. The world really needs to act now to prevent the worst-case climate change scenario," says co-author Daniel Farinotti, head of the glaciology group at ETH Zurich and the Swiss Federal Institute for Forest, Snow and Landscape Research WSL.

Novel C. diff structures are required for infection, offer new therapeutic targets

  Iron storage "spheres" inside the bacterium C. diff -- the leading cause of hospital-acquired infections -- could offer new targ...