Tuesday 19 March 2019

Long-distance quantum information exchange -- success at the nanoscale

Researchers at the Niels Bohr Institute cooled a chip containing a large array of spin qubits below -273 Celsius. To manipulate individual electrons within the quantum-dot array, they applied fast voltage pulses to metallic gate electrodes located on the surface of the gallium-arsenide crystal (see scanning electron micrograph). Because each electron also carries a quantum spin, this allows quantum information processing based on the array's spin states (the arrows on the graphic illustration). During the mediated spin exchange, which only took a billionth of a second, two correlated electron pairs were coherently superposed and entangled over five quantum dots, constituting a new world record within the community.

No comments:

Post a Comment

Novel C. diff structures are required for infection, offer new therapeutic targets

  Iron storage "spheres" inside the bacterium C. diff -- the leading cause of hospital-acquired infections -- could offer new targ...